AP Chemistry
 Unit 7- Homework Problems
 Equilibrium and K_{sp}

Nature of the Equilibrium State

1. Draw on this graph where equilibrium has been reached.

2. What are three qualities of any equilibrium equation?
a.
b.
c.
3. For a general equation: $a A+b B \longleftrightarrow \rightarrow c C+d D$, write the equation for K_{c}.

Developing $\mathrm{K}_{\text {eq }}$

1. For each of the equations below, write the expression for K_{c} :
a. $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$
b. $\mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CN}^{-1}(\mathrm{aq})$
c. $\mathrm{PbCl}_{2}(\mathrm{~s}) \leftarrow \mathrm{Pb}^{+2}(\mathrm{aq})+2 \mathrm{Cl}^{-1}(\mathrm{aq})$
2. For each of the equations below, write the expression for K_{p} :
a. $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
b. $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
c. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \leftarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
3. Put the following K values in order of increasing product-favored ability.
a. $K=4 \times 10^{-5}$
b. $K=2 \times 10^{-9}$
c. $K=7 \times 10^{-5}$
d. $\mathrm{K}=3 \times 10^{-3}$

Equilibrium Mathematics

1. The equation: $\quad \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$ has a value of $\mathrm{K}_{\mathrm{c}}=2.5 \times 10^{-6}$

What is the value of K_{c} for: $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$?
What is the value of K_{c} for: $\quad 2 \mathrm{C}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftarrow \rightarrow 2 \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$
2. The equation: $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad$ has a value of $\mathrm{K}_{\mathrm{p}}=4.9 \times 10^{-3}$

What is the value of K_{p} for: $\quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftarrow \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$?
What is the value of K_{p} for: $\quad \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$?
3. The equation: $\quad 2 \mathrm{NH}_{3}(\mathrm{~g}) \longleftrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad$ has a value of $\mathrm{K}_{\mathrm{c}}=2.7 \times 10^{-4}$

What is the value for K_{p} ?
What is the value of K_{c} for: $\quad 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g}) \leftarrow \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$?
4. The equation: $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \longleftrightarrow \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad$ has a value of $\mathrm{K}_{\mathrm{p}}=3.2 \times 10^{-4}$

What is the value for K_{c} at 300 K ?
What is the value for K_{c} for: $\quad \mathrm{NO}_{2}(\mathrm{~g}) \longleftrightarrow 11 / 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
5. Given the following equations:

```
\(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \longleftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})\)
\(\mathrm{Kc}=4.8\)
\(\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \leftarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})\)
\(\mathrm{K}_{\mathrm{c}}=0.48\)
```

Calculate the K_{c} value for:
$\mathrm{Fe}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftarrow \mathrm{FeO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=$???
6. Given the following equations:
$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{SO}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=48.2$
$2 \mathrm{SO}_{3}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=0.075$

Calculate the K_{p} value for:
$\mathrm{S}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=$???
7. Which of the following equations has $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}$
a. $\mathrm{PCl}_{5}(\mathrm{~g}) \leftarrow \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
b. $2 \mathrm{NOCl}(\mathrm{g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
c. $\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
d. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \longleftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
e. $2 \mathrm{NO}(\mathrm{g}) \leftarrow \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

K_{c} and K_{p} Calculations

At Equilibrium

1. For the reaction: $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

At equilibrium $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.25 \mathrm{M} \&\left[\mathrm{NO}_{2}\right]=0.175 \mathrm{M}$. Calculate K_{c}
2. For the reaction: $\quad 2 \mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \mathrm{K}_{\mathrm{p}}=32$

At equilibrium $\mathrm{P}_{\mathrm{NH} 3}=0.64 \mathrm{~atm} \& \mathrm{P}_{\mathrm{N} 2}=1.18 \mathrm{~atm}$. Calculate $\mathrm{P}_{\mathrm{H} 2}$
Dissociation
3. For the reaction: $\quad \mathrm{PCl}_{5}(\mathrm{~g}) \leftrightarrow \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

If the initial pressure of PCl_{5} is 2 atm and at equilibrium it is 15% dissociated, what is K_{p} ?
4. For the reaction: $\quad 2 \mathrm{NO}(\mathrm{g}) \leftrightarrow \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

If the initial $[\mathrm{NO}]=0.50 \mathrm{M}$ and at equilibrium it is 5% dissociated, what is K_{c} ?
5. For the equation: $\quad \mathrm{NH}_{4} \mathrm{I}(\mathrm{s}) \longleftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HI}(\mathrm{g})$

The total pressure at equilibrium is 4.2 atm . What is K_{p} ?
6. For the equation: $\quad\left(\mathrm{NH}_{4}\right)\left(\mathrm{H}_{2} \mathrm{NCO}_{2}\right)(\mathrm{s}) \leftrightarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$

The total pressure at equilibrium is 0.33 atm . What is K_{p} ?
7. For the equation: $\quad \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{NO}(\mathrm{g})$, you start with 2 M of each of the reactants. They react away to an extent of 27% to reach equilibrium. Calculate the value of K_{c}.
8. For the equation: $\quad 2 \mathrm{NOBr}(\mathrm{g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$, you start with 0.75 M of the NOBr . At equilibrium, the NOBr has reacted away by 89%. Calculate the value of K_{c}.

Q vs. K
9. For the reaction: $\quad 2 \mathrm{NOCl}(\mathrm{g}) \leftrightarrow \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=1.2 \times 10^{-3}$

If the initial $[\mathrm{NOCl}]_{\mathrm{o}}=0.15 \mathrm{M},[\mathrm{NO}]_{\mathrm{o}}=0.75 \mathrm{M}$, and $\left[\mathrm{Cl}_{2}\right]_{\mathrm{o}}=0.05 \mathrm{M}$, is the system at equilibrium?
If not, which way will the reaction shift, left or right?
10. For the reaction: $\quad \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{NH}_{4}^{+1}(\mathrm{aq})+\mathrm{OH}^{-1}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{c}}=1.8 \times 10^{-5}$

If the initial $\left[\mathrm{NH}_{3}\right]_{0}=0.5 \mathrm{M},\left[\mathrm{NH}_{4}{ }^{+1}\right]=0.0025 \mathrm{M}$, and $\left[\mathrm{OH}^{-1}\right]=0.0025 \mathrm{M}$, is the system at equilibrium? If not, which way will the reaction shift, left or right?
11. For the equation: $\quad \mathrm{CS}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow \mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{CCl}_{4}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=4.8 \times 10^{-2}$. If you start with $\left[\mathrm{CS}_{2}\right]=0.025$ $\mathrm{M},\left[\mathrm{Cl}_{2}\right]=0.175 \mathrm{M},\left[\mathrm{S}_{2} \mathrm{Cl}_{2}\right]=0.58 \mathrm{M}$, and $\left[\mathrm{CCl}_{4}\right]=0.042 \mathrm{M}$, is the reaction at equilibrium? If not, which way will the reaction go to reach equilibrium (left or right)?

Calculating Equilibrium Conditions

12. For the equation: $\quad \mathrm{PCl}_{5}(\mathrm{~g}) \longleftrightarrow \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$, you start with 0.25 atm of each of the products as well as the reactants. The K_{p} value is 0.125 . Is the reaction at equilibrium? Prove it. What are the equilibrium pressures of all species?
13. For the equation: $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \longleftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=0.235$

If 2 moles of each of $\mathrm{H}_{2} \mathrm{O}$ and CO are put into a 10 L container, what is the concentration of all species at equilibrium?
14. For the equation: $\quad \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longleftrightarrow \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=4.8$

If enough $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is put into a container so its pressure is 8 atm , what is the equilibrium pressure of all species. What is the total pressure?
15. For the equation: $\quad \mathrm{CaCO}_{3}(\mathrm{~s}) \longleftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=2.4$ If $200 \mathrm{~g} \mathrm{CaCO}_{3}$ is put into a 20 L container at 500 K , how many grams of it remain at equilibrium?
16. For the equation: $\quad 2 \mathrm{KClO}_{3}(\mathrm{~s}) \leftarrow \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$, you start with some KClO_{3} that decomposes into the products. At equilibrium, there is some solid remaining and the total pressure in the flask is 0.58 atm . Calculate the value of K_{p}.
17. For the equation: $\quad \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \leftarrow \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$, you start with some $\mathrm{NH}_{4} \mathrm{Cl}$ that decomposes into the products. At equilibrium, there is some solid remaining and the total pressure in the flask is 1.8 atm . Calculate the value of K_{p}.
18. For the equation: $\quad \mathrm{COBr}_{2}(\mathrm{~g}) \longleftrightarrow \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$, you start with 4 moles in a 10 L vessel of COBr_{2}. The reaction has a $\mathrm{K}_{\mathrm{c}}=0.76$. What are the equilibrium concentrations of all species?
19. For the equation: $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$, you start with 2 atm of each of the reactants and none of the products. The $\mathrm{K}_{\mathrm{p}}=3.4$. What are the equilibrium pressures of all species?
20. For the equation: $\quad 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CCl}_{4}(\mathrm{~g})$, you start with 0.25 M of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and is has a K_{c} value of 0.84 . What are the equilibrium concentrations of all species?
21. For the equation: $\quad \mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \leftarrow \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, you start with 100 grams of $\mathrm{NH}_{4} \mathrm{HS}$ (s) in a 2.5 L flask at 500 K . The K_{p} value is 1.45 . How many grams of the solid remain at equilibrium?

LeChatelier's Principle

1. State LeChatelier's Principle.
2. For the following reaction: \quad Heat $+\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \rightarrow \mathrm{Ca}^{+2}(\mathrm{aq})+2 \mathrm{HCO}_{3}^{-1}$ (aq) What will be the effect of doing each of the following actions on the above equilibrium?
a) Adding $\mathrm{CaCO}_{3}(\mathrm{~s})$ Left Right No Change
b) Removing $\mathrm{Ca}^{+2}(\mathrm{aq})$ Left Right No Change
c) Removing CO_{2} (g) Left Right No Change
d) Adding NaHCO_{3} (s) Left Right No Change
e) Adding $\mathrm{Ne}(\mathrm{g})$ Left Right No Change
f) Adding $\mathrm{CO}_{2}(\mathrm{~g})$ Left Right No Change
g) Increasing temperature Left Right No Change
h) Decreasing volume Left Right No Change
3. For the following reaction: $\quad 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})+$ Heat

What will be the effect of doing each of the following actions on the above equilibrium?
a) Decreasing temperature
Left
Right No Change
b) Increasing $\mathrm{O}_{2}(\mathrm{~g})$
c) Decreasing $\mathrm{SO}_{2}(\mathrm{~g})$
Left Right No Change
Left Right No Change
d) Increasing volume
Left Right No Change
e) Increasing $\mathrm{SO}_{3}(\mathrm{~g})$
Left Right No Change
f) Adding $\mathrm{N}_{2}(\mathrm{~g})$
$\mathrm{K}_{\text {sp }}$

1. For each of the substances below, write the solubility equation as well as the $\mathrm{K}_{\text {sp }}$ equation.
a. AgCl
b. PbI_{2}
c. $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
d. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Problem Solving with $\mathrm{K}_{\text {sp }}$

1. Calculate the $\mathrm{K}_{\text {sp }}$ of CaCrO_{4} if a saturated solution has $\left[\mathrm{Ca}^{+2}\right]=4.5 \times 10^{-5}$
2. Calculate the $\mathrm{K}_{\text {sp }}$ of $\mathrm{Fe}(\mathrm{OH})_{3}$ if a saturated solution has $\left[\mathrm{Fe}^{+3}\right]=4.2 \times 10^{-6}$
3. Calculate the solubility (moles/L) of PbCO_{3} if $\mathrm{K}_{\text {sp }}=7.4 \times 10^{-14}$
4. Calculate the solubility $(\mathrm{moles} / \mathrm{L})$ of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ if $\mathrm{K}_{\text {sp }}=1.2 \times 10^{-5}$
5. Calculate the solubility $(\mathrm{mg} / \mathrm{L})$ of FePO_{4} if $\mathrm{K}_{\mathrm{sp}}=9.4 \times 10^{-9}$
6. Calculate the solubility $(\mathrm{mg} / \mathrm{L})$ of $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ if $\mathrm{K}_{\text {sp }}=7.2 \times 10^{-25}$
7. How many mg of CuCrO_{4} will dissolve in 50 mL of water $\left(\mathrm{K}_{\text {sp }}=9.4 \times 10^{-10}\right)$
8. If 100 mg of $\mathrm{CaCO}_{3}\left(\mathrm{~K}_{\mathrm{sp}}=3.4 \times 10^{-9}\right)$ is put in 500 mL of water, how many mg remain undissolved?
9. Put the following substances in order of least soluble to most soluble.

$$
\mathrm{AuCl}\left(\mathrm{~K}_{\mathrm{sp}}=2 \times 10^{-13}\right) \quad \mathrm{PbCrO}_{4}\left(\mathrm{~K}_{\mathrm{sp}}=2.8 \times 10^{-13}\right) \quad \mathrm{MnCO}_{3}\left(\mathrm{~K}_{\mathrm{sp}}=2.3 \times 10^{-11}\right) \quad \mathrm{NiCO}_{3}\left(\mathrm{~K}_{\text {sp }}=1.4 \times 10^{-7}\right)
$$

10. Put the following substances in order of least soluble to most soluble.

$$
\mathrm{Zn}(\mathrm{CN})_{2}\left(\mathrm{~K}_{\mathrm{sp}}=8 \times 10^{-12}\right) \quad \operatorname{AgBr}\left(\mathrm{K}_{\mathrm{sp}}=5 . \times 10^{-13}\right) \quad \mathrm{Pb}(\mathrm{OH})_{2}\left(\mathrm{~K}_{\mathrm{sp}}=1.4 \times 10^{-15}\right) \mathrm{BaSO}_{4}\left(\mathrm{~K}_{\mathrm{sp}}=1.1 \times 10^{-10}\right)
$$

11. Prove which of each of the substances below is the most soluble.
a. $\operatorname{AgBr}\left(\mathrm{K}_{\text {sp }}=5.4 \times 10^{-13}\right)$ vs. $\operatorname{AgI}\left(\mathrm{K}_{\text {sp }}=8.5 \times 10^{-17}\right)$
b. $\mathrm{PbCl}_{2}\left(\mathrm{~K}_{\text {sp }}=1.7 \times 10^{-5}\right)$ vs. $\mathrm{PbBr}_{2}\left(\mathrm{~K}_{\text {sp }}=6.6 \times 10^{-6}\right)$
c. $\mathrm{AgCl}\left(\mathrm{K}_{\text {sp }}=1.8 \times 10^{-10}\right)$ vs. $\mathrm{Ag}_{2} \mathrm{CrO}_{4}\left(\mathrm{~K}_{\text {sp }}=1.1 \times 10^{-12}\right)$
d. $\mathrm{CaCO}_{3}\left(\mathrm{~K}_{\text {sp }}=3.4 \times 10^{-9}\right)$ vs. $\mathrm{Mg}(\mathrm{OH})_{2}\left(\mathrm{~K}_{\text {sp }}=5.6 \times 10^{-12}\right)$

Common Ion Effect

1. Calculate the solubility $($ moles $/ \mathrm{L})$ of $\mathrm{MgS}\left(\mathrm{K}_{\mathrm{sp}}=5.2 \times 10^{-16}\right) \mathrm{in}$:
a. Pure water
b. A 0.25 M solution of MgCl_{2}
2. Calculate the solubility $($ moles $/ \mathrm{L})$ of $\mathrm{PbCl}_{2}\left(\mathrm{~K}_{\mathrm{sp}}=1.7 \times 10^{-5}\right) \mathrm{in}$:
a. Pure water
b. A 0.55 M solution of NaCl
3. Calculate the solubility $($ moles $/ \mathrm{L})$ of $\mathrm{PbI}_{2}\left(\mathrm{~K}_{\text {sp }}=9.8 \times 10^{-9}\right) \mathrm{in}$:
a. Pure water
b. A 0.005 M solution of AlI_{3}
4. Calculate what mass of $\mathrm{Hg}_{2} \mathrm{SO}_{4}\left(\mathrm{~K}_{\text {sp }}=6.5 \times 10^{-7}\right)$ will dissolve per liter in:
a. Pure water
b. A 0.0075 M solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
5. Calculate what mass of $\mathrm{CaCO}_{3}\left(\mathrm{~K}_{\mathrm{sp}}=3.4 \times 10^{-9}\right)$ will dissolve per liter in:
a. Pure water
b. A 0.45 M solution of CaCl_{2}
6. Calculate what mass of $\mathrm{PbCl}_{2}\left(\mathrm{~K}_{\text {sp }}=1.7 \times 10^{-5}\right)$ will dissolve per liter in:
a. Pure water
b. A 0.067 M solution of AlCl_{3}
7. AgBr will be the least soluble in 0.10 M :
a. NaBr
b. CaBr_{2}
c. AlBr_{3}
d. $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
e. AgNO_{3}
8. MgF_{2} will be least soluble in 0.25 M :
a. KF
b. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
c. $\mathrm{MgC}_{2} \mathrm{O}_{4}$
d. BaF_{2}
e. LiF

Precipitation

1. Will a ppt of $\mathrm{CaCO}_{3}\left(\mathrm{~K}_{\mathrm{sp}}=3.4 \times 10^{-9}\right)$ form if $\left[\mathrm{Ca}^{+2}\right]=4 \times 10^{-6} \mathrm{M}$ and $\left[\mathrm{CO}_{3}^{-2}\right]=4 \times 10^{-3}$?
2. Will a ppt of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}\left(\mathrm{~K}_{\text {sp }}=1.1 \times 10^{-12}\right)$ form if $\left[\mathrm{Ag}^{+}\right]=3 \times 10^{-4}$ and $\left[\mathrm{CrO}_{4}^{-2}\right]=2 \times 10^{-4}$?
3. Will a ppt of $\mathrm{BaCO}_{3}\left(\mathrm{~K}_{\text {sp }}=2.6 \times 10^{-9}\right)$ form if 50 mL of $4 \times 10^{-5} \mathrm{M} \mathrm{Ba}^{+2}$ is mixed with 50 mL of $8 \times 10^{-5} \mathrm{M} \mathrm{CO}_{3}{ }^{-2}$?
4. Will a ppt of $\mathrm{PbBr}_{2}\left(\mathrm{~K}_{\mathrm{sp}}=6.6 \times 10^{-6}\right)$ form if 150 mL of $2 \times 10^{-2} \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is mixed with 50 mL of $3 \times 10^{-2} \mathrm{M} \mathrm{AlBr}_{3}$?
5. What concentration of $\left[\mathrm{OH}^{-1}\right]$ will cause a ppt of $\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{~K}_{\mathrm{sp}}=4.9 \times 10^{-17}\right)$ of a $2 \times 10^{-5} \mathrm{M} \mathrm{Fe}^{+2}$ solution ?
6. What concentration of $\left[\mathrm{C}_{2} \mathrm{O}_{4}^{-2}\right]$ will cause a ppt of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\left(\mathrm{~K}_{\text {sp }}=5.4 \times 10^{-12}\right)$ of a $4 \times 10^{-4} \mathrm{M} \mathrm{Ag}^{+1}$ solution?
7. What mass of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} * 7 \mathrm{H}_{2} \mathrm{O}$ (s) will cause a ppt of $\mathrm{NiCO}_{3}\left(\mathrm{~K}_{\text {sp }}=1.4 \times 10^{-7}\right)$ of a $3.5 \times 10^{-4} \mathrm{M} \mathrm{CO}_{3}^{-2}$ solution?
8. What mass of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ will cause a ppt of

Separations by $\mathrm{K}_{\text {sp }}$

1. A solution is made so that $\left[\mathrm{Ca}^{+2}\right]=0.00050$ and $\left[\mathrm{Mg}^{+2}\right]=0.00050$ as well. If $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ is added, answer the following questions. Know that $\mathrm{K}_{\text {sp }} \mathrm{CaCr}_{2} \mathrm{O}_{7}=4.8 \times 10^{-7}$ and $\mathrm{K}_{\text {sp }} \mathrm{MgCr}_{2} \mathrm{O}_{7}=7.6 \times 10^{-8}$
a. Which will ppt $1^{\text {st? }}$. At what $\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}\right]$ will it begin to ppt?
b. What is the maximum $\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}\right]$ that can be made to ppt almost all of one and none of the other?
c. What is the concentration of the less soluble ion under the conditions specified in " b "?
d. What $\%$ of the less soluble ion remains in solution under the conditions specified in "b"?
2. A solution is made so that $\left[\mathrm{Pb}^{+2}\right]=0.00250$ and $\left[\mathrm{Hg}^{+2}\right]=0.0075$. If $\mathrm{SO}_{4}{ }^{-2}$ is added, answer the following questions.

Know that $\mathrm{K}_{\text {sp }} \mathrm{PbSO}_{4}=2.5 \times 10^{-8}$ and $\mathrm{K}_{\text {sp }} \mathrm{HgSO}_{4}=5.4 \times 10^{-7}$
a. Which will ppt $1^{\text {st? }}$. At what $\left[\mathrm{SO}_{4}^{-2}\right]$ will it begin to ppt?
b. What is the maximum $\left[\mathrm{SO}_{4}{ }^{-2}\right]$ that can be made to ppt almost all of one and none of the other?
c. What is the concentration of the less soluble ion under the conditions specified in "b"?
d. What \% of the less soluble ion remains in solution under the conditions specified in "b"?
3. A solution is made so that $\left[\mathrm{Zn}^{+2}\right]=0.00250$ and $\left[\mathrm{Ag}^{+1}\right]=0.057$. If F^{-1} is added, answer the following questions. Know that $\mathrm{K}_{\text {sp }} \mathrm{ZnF}_{2}=4.8 \times 10^{-7}$ and $\mathrm{K}_{\text {sp }} \mathrm{AgF}=7.6 \times 10^{-8}$
a. Which will ppt $1^{\text {st }}$? At what $\left[\mathrm{F}^{-1}\right]$ will it begin to ppt ?
b. What is the maximum $\left[\mathrm{F}^{-1}\right]$ that can be made to ppt almost all of one and none of the other?
c. What is the concentration of the less soluble ion under the conditions specified in "b"?
d. What \% of the less soluble ion remains in solution under the conditions specified in "b"?

Combination Problems

1. For the reaction at 2000 K

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \longleftrightarrow \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

For an experiment, the equilibrium values of each substance are as follows:

$$
\begin{aligned}
& {\left[\mathrm{H}_{2}\right]=0.20 \mathrm{M}} \\
& {\left[\mathrm{CO}_{2}\right]=0.30 \mathrm{M}} \\
& {\left[\mathrm{H}_{2} \mathrm{O}\right]=[\mathrm{CO}]=0.55 \mathrm{M}}
\end{aligned}
$$

a. What is the mole fraction of CO in the equilibrium mixture?
b. Calculate the value of K_{c}, the equilibrium constant for the reaction above.
c. Determine K_{p} in terms of K_{c} for this system.
d. When the system is cooled from 2000 K to a lower temperature, 30% of the CO is converted back to CO_{2}. Calculate the value of K_{c} at this lower temperature.
e. In a different experiment, 0.50 mole of H_{2} is mixed with 0.50 mole of CO_{2} in a 3.0 L reaction vessel at 2000 K . Calculate the equilibrium concentration, in M , of CO at this temperature.
2. For the reaction:

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \leftarrow \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

It is observed that greater amounts of PCl_{3} and Cl_{2} are produced as the temperature is increased.
a) What is the sign of $\Delta \mathrm{S}^{0}$ for the reaction? Explain.
b) What change, if any, will occur in $\Delta \mathrm{G}^{0}$ for the reaction as the temperature is increased?

Explain.
c) If He gas is added to the original mixture at constant volume and temperature, what will happen to the partial pressure of Cl_{2} ? Explain.
d) If the volume of the reaction mixture is decreased at constant temperature to half the original volume, what will happen to the number of moles of Cl_{2} in the reaction vessel? Explain.
3. For the reaction:

$$
\mathrm{C}(s)+\mathrm{CO}_{2}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{CO}(\mathrm{~g})
$$

Solid carbon and carbon dioxide gas at $1,160 \mathrm{~K}$ were placed in a rigid 2.00 L container, and the reaction represented above occurred. As the reaction proceeded, the total pressure in the container was monitored. When equilibrium was reached, there was still some $\mathrm{C}(s)$ remaining in the container.
Results are recorded in the table below.

Time (hours)	Total Pressure of gases (atm)
0.0	5.00
2.0	6.26
4.0	7.09
6.0	7.75
8.0	8.37
10.0	8.37

(a) Write the expression for the equilibrium constant, $K p$, for the reaction.
(b) Calculate the number of moles of $\mathrm{CO}_{2}(g)$ initially placed in the container. (Assume that the volume of the solid carbon is negligible.)
(c) For the reaction mixture at equilibrium at $1,160 \mathrm{~K}$, the partial pressure of the $\mathrm{CO}_{2}(\mathrm{~g})$ is 1.63 atm . Calculate:
(i) the partial pressure of $\mathrm{CO}(\mathrm{g})$, and
(ii) the value of the equilibrium constant, $K p$.
(d) If a suitable solid catalyst were placed in the reaction vessel, would the final total pressure of the gases at equilibrium be greater than, less than, or equal to the final total pressure of the gases at equilibrium without the catalyst? Justify your answer. (Assume that the volume of the solid catalyst is negligible.)
(e) In another experiment involving the same reaction, a rigid 2.00 L container initially contains 10.0 g of $\mathrm{C}(s)$, plus $\mathrm{CO}(g)$ and $\mathrm{CO}_{2}(g)$, each at a partial pressure of 2.00 atm at $1,160 \mathrm{~K}$. Predict whether the partial pressure of $\mathrm{CO}_{2}(\mathrm{~g})$ will increase, decrease, or remain the same as this system approaches equilibrium. Justify your prediction with a calculation.
4. Answer the following questions:
a. A saturated solution is prepared by adding excess $\mathrm{PbI}_{2}(\mathrm{~s})$ to distilled water to form 1.0 L of solution at $25^{\circ} \mathrm{C}$. The concentration of $\mathrm{Pb}^{+2}(\mathrm{aq})$ in the saturated solution is found to be 1.3×10^{-3} M. The chemical equation for the dissolution of $\mathrm{PbI}_{2}(\mathrm{~s})$ in water is shown below:

$$
\mathrm{PbI}_{2}(\mathrm{~s}) \leftrightarrow \rightarrow \mathrm{Pb}^{+2}(\mathrm{aq})+2 \mathrm{I}^{-1}(\mathrm{aq})
$$

i) Write the equilibrium-constant expression for the equation.
ii) Calculate the molar concentration of $\mathrm{I}^{-1}(\mathrm{aq})$ in the solution.
iii) Calculate the value of the equilibrium constant, K_{sp}.
b. A saturated solution is prepared by $\mathrm{PbI}_{2}(\mathrm{~s})$ to distilled water to form 2.0 L of solution at $25^{\circ} \mathrm{C}$. What are the molar concentrations of $\mathrm{Pb}^{+2}(\mathrm{aq})$ and $\mathrm{I}^{-1}(\mathrm{aq})$ in the solution? Justify your answer.
c. Soild NaI is added to a saturated solution of PbI_{2} at $25^{\circ} \mathrm{C}$. Assuming that the volume of the solution does not change, does the molar concentration of $\mathrm{Pb}^{+2}(\mathrm{aq})$ in the solution increase, decrease, or stay the same? Justify your answer.
5. The value of $\mathrm{K}_{\text {sp }}$ for the salt BaCrO_{4} is 1.2×10^{-10}. When a $500 . \mathrm{mL}$ sample of $8.2 \times 10^{-6} \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is added to $500 . \mathrm{mL}$ of $8.2 \times 10^{-6} \mathrm{M} \mathrm{Na}_{2} \mathrm{CrO}_{4}$, no precipitate is observed.
i) Assuming the volumes are additive, calculate the molar concentrations of $\mathrm{Ba}^{+2}(\mathrm{aq})$ and $\mathrm{CrO}_{4}{ }^{-2}$ (aq) in the 1.00 L of solution.
ii) Use the molar concentrations of $\mathrm{Ba}^{+2}(\mathrm{aq})$ and $\mathrm{CrO}_{4}^{-2}(\mathrm{aq})$ ions as determined above to show why a precipitate does not form. You must include a calculation as part of your answer.
6. Silver chromate dissociates in water according the equation below:

$$
\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s}) \leftrightarrow \rightarrow 2 \mathrm{Ag}^{+1}(\mathrm{aq})+\mathrm{CrO}_{4}^{-2}(\mathrm{aq}) \mathrm{K}_{\mathrm{sp}}=2.6 \times 10^{-12} \text { at } 25^{\circ} \mathrm{C}
$$

a) Write the equilibrium-constant expression for the dissolving of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ (s)
b) Calculate the concentration, in M , of $\mathrm{Ag}^{+1}(\mathrm{aq})$ in a saturated solution of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ at $25^{\circ} \mathrm{C}$
c) Calculate the maximum mass, in grams, of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ that can dissolve in $100 . \mathrm{mL}$ of water at 25 ${ }^{\circ} \mathrm{C}$.
d) A 0.100 mol sample of solid AgNO_{3} is added to a 1.00 L saturated solution of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$. Assuming no volume change, does $\left[\mathrm{CrO}_{4}^{-2}\right]$ increase, decrease, or stay the same? Justify.
7. In a saturated solution of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ at $25^{\circ} \mathrm{C}$, the concentration of $\mathrm{Ag}^{+1}(\mathrm{aq})$ is $5.3 \times 10^{-5} \mathrm{M}$. The equilibrium constant expression for the dissolving of $\mathrm{Ag}_{3} \mathrm{PO}_{4}(\mathrm{~s})$ in water is shown below:

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+1}\right]^{3}\left[\mathrm{PO}_{4}^{-3}\right]
$$

a) Write the balanced equation for the dissolving of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ in water.
b) Calculate the value of $\mathrm{K}_{\text {sp }}$ for $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ at $25^{\circ} \mathrm{C}$.
c) A 1.00 L sample of saturated $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ solution is allowed to evaporate at $25^{\circ} \mathrm{C}$ to a final volume of $500 . \mathrm{mL}$. What is the $\left[\mathrm{Ag}^{+1}\right]$ in the solution? Justify your answer.

