
AP Chemistry Unit 7- Homework Problems Equilibrium and K_{sp}

Nature of the Equilibrium State

1. Draw on this graph where equilibrium has been reached.

- 2. What are three qualities of any equilibrium equation?
 - a. Reversible
 - b. Dynamic
 - c. Occur when there are a stable ratio of products: reactants
- 3. For a general equation: $aA + bB \leftarrow \rightarrow cC + dD$, write the equation for K_c. $K_c = [C]^c [D]^d$
 - $= \frac{|\mathbf{C}| |\mathbf{D}|}{[\mathbf{A}]^{a} [\mathbf{B}]^{b}}$

Developing K_{eq}

1. For each of the equations below, write the expression for K_c :

```
a. 2 H_2 S(g) \iff 2 H_2(g) + S_2(g)

K_c = [H_2]^2 [S_2]

[H_2 S]^2

b. HCN (aq) + H<sub>2</sub>O (l) \iff H<sub>3</sub>O<sup>+</sup> (aq) + CN<sup>-1</sup> (aq)

K_c = [H_3 O^+] [CN^{-1}]

[HCN]
```

```
c. PbCl_2 (s) \leftarrow \rightarrow Pb^{+2} (aq) + 2 Cl^{-1} (aq)

K_c = [Pb^{+2}] [Cl^{-1}]^2
```

2. For each of the equations below, write the expression for K_p:

```
a. SO_2Cl_2(g) \leftrightarrow SO_2(g) + Cl_2(g)

K_p = \frac{P_{SO2} - P_{Cl2}}{P_{SO2Cl2}}

b. CO(g) + H_2O(g) \leftrightarrow CO_2(g) + H_2(g)

K_p = \frac{P_{CO2} - P_{H2}}{P_{CO} P_{H2O}}

c. C_6H_{12}O_6(s) + 6 O_2(g) \leftrightarrow 6 CO_2(g) + 6 H_2O(g)

K_p = \frac{P_{CO2}^6 - P_{H2O}^6}{P_{O2}^6}

3. Put the following K values in order of increasing product-favored ability.

a. K = 4x10^{-5}

b. K = 2x10^{-9}
```

b. $K = 2x10^{-9}$ c. $K = 7x10^{-5}$ d. $K = 3x10^{-3}$

b < a < c < d

Equilibrium Mathematics

- C (s) + 2 H₂O (g) \leftrightarrow CO (g) + H₂ (g) has a value of K_c = 2.5 x10⁻⁶ 1. The equation: $CO(g) + H_2(g) \leftrightarrow C(s) + 2 H_2O(g)?$ What is the value of K_c for: $K_c = (2.5 \times 10^{-6})^{-1} = 4 \times 10^{5}$ What is the value of K_c for: $2 C(s) + 4 H_2O(g) \leftrightarrow 2 CO(g) + 2 H_2(g)$ $K_c = (2.5 \times 10^{-6})^2 = 6.25 \times 10^{-12}$ 2. The equation: $H_2O(g) \leftrightarrow H_2(g) + \frac{1}{2}O_2(g)$ has a value of $K_p = 4.9 \times 10^{-3}$ What is the value of K_p for: $2 H_2O(g) \leftrightarrow 2 H_2(g) + O_2(g)?$ $K_p = (4.9 \times 10^{-3})^2 = 2.4 \times 10^{-5}$ What is the value of K_p for: $H_2(g) + \frac{1}{2}O_2(g) \leftrightarrow H_2O(g)?$ $K_p = (4.9 \times 10^{-3})^{-1} = 204$ 3. The equation: has a value of $K_c = 2.7 \times 10^{-4}$ $2 \operatorname{NH}_3(g) \leftrightarrow \operatorname{N}_2(g) + 3 \operatorname{H}_2(g)$ At STP, What is the value for K_p ? $K_p = K_c (RT)^{\Delta n} = (2.7 \text{ x} 10^{-4})[(0.0821)(273 \text{ K})]^2 = 0.136$ At STP, What is the value of K_c for: $\frac{1}{2} N_2(g) + \frac{3}{2} H_2(g) \leftrightarrow NH_3(g)$? $K_c = (2.7 \text{ x} 10^{-4})^{-1/2} = 60.9$ has a value of $K_p = 3.2 \times 10^{-4}$ 4. The equation: $N_2O_4(g) \leftrightarrow 2 NO_2(g)$ What is the value for K_c at 300 K?? $3.2 \times 10^{-4} = K_c [(0.0821)(300 \text{ K})]^1 = 1.30 \times 10^{-5}$ $K_n = K_c (RT)^{\Delta n}$ What is the value for K_c for: NO₂ (g) $\leftarrow \rightarrow \frac{1}{2} N_2O_4$ (g)
 - $K_c = (1.30 \times 10^{-5})^{-1/2} = 277$

9.984
65
_

- 7. Which of the following equations has $K_c = K_p$
 - a. $PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$ No; $\Delta gas = +1$ b. $2 \text{ NOCl } (g) \leftrightarrow 2 \text{ NO} (g) + Cl_2(g)$ No; $\Delta gas = +1$ c. $CaCO_3(s) \leftrightarrow CaO(s) + CO_2(g)$ No; $\Delta gas = +1$ d. $H_2O(g) + CO(g) \leftrightarrow H_2(g) + CO_2(g)$ Yes; $\Delta gas = 0$ e. $2 \text{ NO} (g) \leftrightarrow N_2(g) + O_2(g)$ Yes; $\Delta gas = 0$

K_c and K_p Calculations

At Equilibrium

1. For the reaction: $2 \text{ NO}_2(g) \leftrightarrow N_2O_4(g)$ At equilibrium $[N_2O_4] = 0.25 \text{ M} \& [NO_2] = 0.175 \text{ M}$. Calculate K_c

$$K_{c} = [N_{2}O_{4}] \qquad K_{c} = [0.25] \qquad K_{c} = 8.16$$
$$[NO_{2}]^{2} \qquad [0.175]^{2}$$

2. For the reaction: $2 \text{ NH}_3(g) \leftrightarrow N_2(g) + 3 \text{ H}_2(g) \text{ K}_p = 32$ At equilibrium $P_{NH3} = 0.64$ atm & $P_{N2} = 1.18$ atm. Calculate P_{H2}

$$\frac{K_{p} = \frac{P_{N2}P^{3}_{H2}}{P^{2}_{NH3}} \qquad 32 = \frac{(1.18)P^{3}_{H2}}{(0.64)^{2}} \qquad P_{H2} = 2.23$$

Dissociation

3. For the reaction:	$PCl_5(g) \leftarrow \rightarrow 1$	$PCl_3(g) + Cl_2(g)$	g)					
If the initial pressur	If the initial pressure of PCl ₅ is 2 atm and at equilibrium it is 15% dissociated, what is K_p ?							
$PCl_5(g) \leftarrow \rightarrow$	$PCl_{3}(g) +$	$Cl_{2}(g)$	$\mathbf{K}_{\mathbf{p}} = \underline{\mathbf{P}}_{\mathbf{PCI3}} \underline{\mathbf{P}}_{\mathbf{CI2}}$					
P _o 2	0	0	P_{PCl5}					
Δ -0.30	+0.30	+0.30	$K_p = [0.30]^2$	$K_p = 0.0529$				
P _{eq} 1.7	0.30	0.30	1.7	•				

4. For the reaction: $2 \text{ NO } (g) \leftrightarrow N_2 (g) + O_2 (g)$ If the initial [NO] = 0.50 M and at equilibrium it is 5% dissociated, what is K_c?

	L .		1		,	c
2	NO (g) $\leftarrow \rightarrow$	$N_2(g) +$	$O_{2}(g)$			
[] _o 0.	.50	0	0	$K_c =$	$[N_2][O_2]$	
Δ-0	0.025	+0.0125	+0.0125		$[NO]^2$	4
$[]_{eq} 0$.475	0.0125	0.0125	$K_c =$		$K_c = 6.9 \times 10^{-4}$
					$[0.475]^2$	

5. For the equation: $NH_4I(s) \leftrightarrow NH_3(g) + HI(g)$ The total pressure at equilibrium is 4.2 atm. What is K_p? If P_{tot} = 4.2 atm 2x = 4.2 x = 2.1 atm

 $K_p = P_{NH3}P_{HI} = (2.1)^2 = 4.41$

6. For the equation: $(NH_4)(H_2NCO_2)(s) \leftrightarrow 2 NH_3(g) + CO_2(g)$ The total pressure at equilibrium is 0.33 atm. What is K_p ? If $P_{tot} = 0.33$ atm 3x = 0.33 x = 0.11

 $K_p = P_{NH3}^2 P_{CO2} = (0.22)^2 (0.11) = 5.32 \times 10^{-3}$

7. For the equation: $N_2(g) + O_2(g) \leftrightarrow 2$ NO (g), you start with 2 M of each of the reactants. They react away to an extent of 27% to reach equilibrium. Calculate the value of K_c.

N ₂ (g)	+ $O_2(g) \leftarrow \rightarrow$	2 NO (g)	$\mathbf{K}_{c} = [\mathbf{NO}]^{2}$	
[] _o 2	2	0	[N ₂] [O ₂]	
Δ -0.54	-0.54	+1.08	$K_{c} = [1.08]^{2}$	$K_{c} = 0.547$
[] _{eq} 1.46	1.46	1.08	[1.46] [1.46]	

8. For the equation: $2 \text{ NOBr } (g) \leftrightarrow 2 \text{ NO} (g) + \text{Br}_2 (g)$, you start with 0.75 M of the NOBr. At equilibrium, the NOBr has reacted away by 89%. Calculate the value of K_c.

	2 NOBr (g) $\leftarrow \rightarrow$	2 NO (g) +	$Br_2(g)$	$K_c =$	$[NO]^2[Br_2]$	
[] _o	0.75	0	0		$[NOBr]^2$	
Δ	-0.668	+0.668	+0.334	$K_c =$	$[0.668]^{2}[0.334]$	$K_{c} = 22.2$
[]eq	0.082	0.668	0.334		$[0.082]^2$	

Q vs. K

9. For the reaction: $2 \text{ NOCl } (g) \leftrightarrow 2 \text{ NO } (g) + \text{Cl}_2 (g) \qquad \text{K}_c = 1.2 \times 10^{-3}$ If the initial [NOCl]_o = 0.15 M, [NO]_o = 0.75 M, and [Cl₂]_o = 0.05 M, is the system at equilibrium?

If not, which way will the reaction shift, left or right?

$$\begin{split} K_c &= \quad \frac{[NO]^2[Cl_2]}{[NOCl]^2} \\ Q &= \quad \frac{[0.75]^2[0.05]}{[0.15]^2} \qquad Q = 1.25 > 1.2 \times 10^{-3} \text{ so the reaction goes left} \end{split}$$

10. For the reaction: $NH_3(aq) + H_2O(l) \leftrightarrow NH_4^{+1}(aq) + OH^{-1}(aq)$ $K_c = 1.8 \times 10^{-5}$ If the initial $[NH_3]_o = 0.5$ M, $[NH_4^{+1}] = 0.0025$ M, and $[OH^{-1}] = 0.0025$ M, is the system at equilibrium? If not, which way will the reaction shift, left or right?

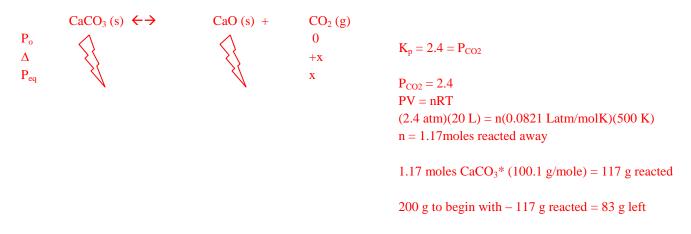
$$\begin{split} K_c &= \underbrace{[NH_4^{+1}][OH^{-1}]}_{[NH_3]} \\ Q &= \underbrace{[0.0025]^2}_{[0.5]} \\ \end{split} \quad Q = 1.25 \times 10^{-5} < 1.8 \times 10^{-5} \text{ so the reaction goes right} \end{split}$$

11. For the equation: $CS_2(g) + 3 Cl_2(g) \leftrightarrow S_2Cl_2(g) + CCl_4(g), K_c = 4.8 \times 10^{-2}$. If you start with $[CS_2] = 0.025$ M, $[Cl_2] = 0.175$ M, $[S_2Cl_2] = 0.58$ M, and $[CCl_4] = 0.042$ M, is the reaction at equilibrium? If not, which way will the reaction go to reach equilibrium (left or right)? Q = $[S_2Cl_2][CCl_4]$ Q = (0.58)(0.042) = 2.3

Calculating Equilibrium Conditions

12. For the equation: $PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$, you start with 0.25 atm of each of the products as well as the reactants. The K_p value is 0.125. Is the reaction at equilibrium? Prove it. What are the equilibrium pressures of all species? $Q = PrepPcp = Q = (0.25)^2 = 0.25$

	$\begin{array}{l} PCl_5(s) \\ P_o & 0.25 \\ \Delta & +x \\ P_{eq} & 0.25 + x \end{array}$		Cl ₂ (g) 0.25 -x 0.25 - x	$Q = \frac{P_{PC13}P_{C12}}{P_{PC15}} Q = (0.25) = 0.25$ $Q > K_{p} 0.25 > 0.125 \text{ so there are too many}$ $Products so the reaction moves to the left$ $K_{p} = \frac{P_{PC13}P_{C12}}{P_{PC15}} 0.125 = (0.25 - x)^{2} x = 0.055$ $\frac{P_{PC15}}{P_{PC15}} = 0.305 P_{PC13} = P_{C12} = 0.195$
--	---	--	---	--


13. For the equation: $H_2O(g) + CO(g) \leftrightarrow CO_2(g) + H_2(g)$ $K_c = 0.235$ If 2 moles of each of H_2O and CO are put into a 10 L container, what is the concentration of all species at equilibrium?

$H_2O(g)$ $P_0 0.2$	+	$\begin{array}{c} \text{CO (g)} \overleftarrow{} & \overleftarrow{} \\ 0.2 \end{array}$	$\operatorname{CO}_2(\mathrm{g}) + 0$	H ₂ (g) 0	$K_{c} = \frac{[CO_{2}][H_{2}]}{[H_{2}O][CO]}$	$0.235 = \frac{(x)^2}{(0.2-x)^2}$
$\begin{array}{lll} \Delta & -x \\ P_{eq} & 0.2 - x \end{array}$		-x 0.2 -x	+x x	+x x	$\begin{aligned} x &= 0.065 \\ [CO_2] &= [H_2] = 0.065 \\ [H_2O] &= [CO] = 0.135 \end{aligned}$	

14. For the equation: $SO_2Cl_2(g) \leftrightarrow SO_2(g) + Cl_2(g)$ $K_p = 4.8$ If enough SO_2Cl_2 is put into a container so its pressure is 8 atm, what is the equilibrium pressure of all species. What is the total pressure?

	$SO_2Cl_2(g)$	\leftrightarrow	$SO_{2}(g) +$	$\operatorname{Cl}_{2}(g)$	$\mathbf{K}_{\mathbf{p}} = \underline{\mathbf{P}_{SO2}\mathbf{P}_{C12}}$
$\mathbf{P}_{\mathbf{o}}$	8		0	0	P _{SO2Cl2}
Δ	-x		+x	+x	$K_p = \frac{[x]^2}{1} \qquad K_p = 4.25$
Peq	8-x		Х	Х	8-x
					$P_{SO2} = P_{C12} = 4.25$
					$P_{SO2C12} = 3.75$
					$P_{tot} = 3.75 + 4.25 + 4.25 = 12.25$

15. For the equation: $CaCO_3$ (s) $\leftarrow \rightarrow CaO$ (s) $+ CO_2$ (g) $K_p = 2.4$ If 200 g CaCO₃ is put into a 20 L container at 500 K, how many grams of it remain at equilibrium?

16. For the equation: $2 \text{ KClO}_3(s) \leftrightarrow 2 \text{ KCl}(s) + 3 \text{ O}_2(g)$, you start with some KClO₃ that decomposes into the products. At equilibrium, there is some solid remaining and the total pressure in the flask is 0.29 atm. Calculate the value of K_p.

0.0244

	2 KClO ₃ (s) $\leftarrow \rightarrow$	2 KCl (s) +	3 O ₂ (g)	$K_{P} = P^{3}_{O2} =$
\mathbf{P}_{o}	\Diamond	\triangleleft	0	
Δ		<u></u>	+0.29	
P _{eq}	N	N	0.29	

17. For the equation: NH₄Cl (s) ← > NH₃ (g) + HCl (g), you start with some NH₄Cl that decomposes into the products. At equilibrium, there is some solid remaining and the total pressure in the flask is 1.8 atm. Calculate the value of K_p.

	$NH_4Cl(s) \leftrightarrow \rightarrow$	$NH_3(g)$ +	HCl (g)	$K_P = P_{NH3}P_{HC1} = (0.9)(0.9) = 0.81$
$\mathbf{P}_{\mathbf{o}}$	$\langle \rangle$	0	0	
Δ	- <u>}</u>	+0.9	+0.9	
Peq	N	0.9	0.9	

18. For the equation: $\text{COBr}_2(g) \leftrightarrow \text{CO}(g) + \text{Br}_2(g)$, you start with 4 moles in a 10 L vessel of COBr_2 . The reaction has a $K_c = 0.76$. What are the equilibrium concentrations of all species?

	$\text{COBr}_2(g) \leftrightarrow$	CO (g) +	$\operatorname{Br}_{2}(g)$	$K_{c} = \frac{[CO][Br_{2}]}{[COBr_{2}]}$
[] ₀	0.4	0	0	$0.76 = \frac{x^2}{x}$ $x = 0.29$
Δ	-X	+x	+x	[0.4-x]
[] _{eq}	0.4-x	Х	Х	$[COBr_2] = 0.11$ $[CO] = [Br_2] = 0.29$

19. For the equation: $H_2(g) + CO_2(g) \leftrightarrow H_2O(g) + CO(g)$, you start with 2 atm of each of the reactants and none of the products. The $K_p = 3.4$. What are the equilibrium pressures of all species?

	$H_{2}(g) +$	$CO_2(g)$	\leftrightarrow	$H_2O(g) +$	CO (g)	$K_p =$	<u>P_{H20}P_{C0}</u>		
$\mathbf{P}_{\mathbf{o}}$	2	2		0	0		$P_{H2}P_{CO2}$		
Δ	-X	-X		+x	+x	3.4 =	$\underline{\mathbf{x}}^2$	x = 1.3	
Peq	2-x	2-x		X	Х		$[2-x]^2$		
						$P_{CO2} =$	$P_{H2} = 0.7$		$P_{\rm CO}=P_{\rm H2O}=1.3$

20. For the equation: $2 \operatorname{CH}_2\operatorname{Cl}_2(g) \leftrightarrow \operatorname{CH}_4(g) + \operatorname{CCl}_4(g)$, you start with 0.25 M of $\operatorname{CH}_2\operatorname{Cl}_2$ and is has a K_c value of 0.84. What are the equilibrium concentrations of all species?

	$2 \operatorname{CH}_2\operatorname{Cl}_2(g) \leftarrow$	\rightarrow CH ₄ (g) +	$\text{CCl}_4(g)$	$\mathbf{K}_{\mathrm{c}} = [\underline{\mathbf{CH}_4}][\underline{\mathbf{CCl}_4}]$	
[]0	0.25	0	0	$[CH_2Cl_2]^2$	
Δ	-2x	$+\mathbf{x}$	$+\mathbf{x}$	$0.84 = \underline{x^2}$	x = 0.0809
[]eq	0.25-2x	X	х	$[0.25-2x]^2$	
				$[CH_2Cl_2] = 0.0882$	$[CH_4] = [CCl_4] = 0.0809$

21. For the equation: NH_4HS (s) $\leftarrow \rightarrow NH_3$ (g) + H_2S (g), you start with 100 grams of NH_4HS (s) in a 2.5 L flask at 500 K. The K_p value is 1.45. How many grams of the solid remain at equilibrium?

	NH_4HS (s) \leftarrow	\rightarrow NH ₃ (g) +	$H_2S(g)$	$K_P = P_{NH3}P_{H2S}$ $x^2 = 1.45$	x = 1.20 atm
$\mathbf{P}_{\mathbf{o}}$	\triangleleft	0	0		
Δ		+x	+x	n = PV/RT = (1.2 atm)(2.5 L)/[(1.2 atm)(2.5 L)/((1.2 atm)(2.5 L)/((1.2 atm)(2.5 L))/((1.2 atm)(2.5 L)/((1.2 atm)(2.5 L))/((1.2 atm)(2.5 L)/((1.2 atm)(2.5 L))/((1.2 atm)(2.5 L)/((1.2 atm)(2.5 L))/((1.2 atm)(2.5 atm)(2.5 L))/((1.2 atm)(2.5 atm)(2.5 atm))/((1.2 atm	(0.0821)(500 K)]
P _{eq}	N	Х	Х	n = 0.0731 moles NH ₃ so there	must have been the
				same moles of NH ₄ HS that	broke up
				(0.0731 mol)(51.1 g/mol) = 3.73	35 g broke up so:
				100 g - 3.735 g = 96.265 g remains	ain

LeChatelier's Principle

1. State LeChatelier's Principle. A change in any factor that effects the equilibrium of a system will cause the system to shift in such a way to reduce or counteract that initial change.

2. For the following reaction: Heat + $CaCO_3(s) + CO_2(g) + H_2O(l) \leftarrow a^{-2}(aq) + 2 HCO_3^{-1}(aq)$

What will be the effect of doing each of the following actions on the above equilibrium?

a) Adding CaCO ₃ (s)	Left	Right	No Change
b) Removing Ca^{+2} (aq)	Left	Right	No Change
c) Removing $CO_2(g)$	Left	Right	No Change
d) Adding NaHCO ₃ (s)	Left	Right	No Change
e) Adding Ne (g)	Left	Right	No Change
f) Adding CO ₂ (g)	Left	Right	No Change
g) Increasing temperature	Left	Right	No Change
h) Decreasing volume	Left	Right	No Change

3. For the following reaction: $2 \text{ SO}_2(g) + O_2(g) \leftrightarrow 2 \text{ SO}_3(g) + \text{Heat}$

What will be the effect of doing each of the following actions on the above equilibrium?

a) Decreasing temperature	Left	Right	No Change
b) Increasing $O_2(g)$	Left	Right	No Change
c) Decreasing $SO_2(g)$	Left	Right	No Change
d) Increasing volume	Left	Right	No Change
e) Increasing $SO_3(g)$	Left	Right	No Change
f) Adding $N_2(g)$	Left	Right	No Change

\mathbf{K}_{sp}

- 1. For each of the substances below, write the solubility equation as well as the K_{sp} equation.
 - a. AgCl $AgCl \leftrightarrow Ag^{+} + Cl^{-1}$ $K_{sp} = [Ag^{+}][Cl^{-1}]$ b. PbI₂ $PbI_2 \leftrightarrow Pb^{+2} + 2 I^{-1}$ $K_{sp} = [Pb^{+2}][I^{-1}]^2$ c. Ag₂CO₃ $Ag_2CO_3 \leftrightarrow 2 Ag^{+} + CO_3^{-2}$ $K_{sp} = [Ag^{+}]^2 [CO_3^{-2}]$ d. Ca₃(PO₄)₂ $Ca_3(PO_4)_2 \leftrightarrow 3 Ca^{+2} + 2 PO_4^{-3}$ $K_{sp} = [Ca^{+2}]^3 [PO_4^{-3}]^2$

Problem Solving with K_{sp}

1. Calculate the K_{sp} of CaCrO₄ if a saturated solution has $[Ca^{+2}] = 4.5 \times 10^{-5}$ $CaCrO_4 \leftrightarrow Ca^{+2} + CrO_4^{-2}$ $K_{sp} = [Ca^{+2}][CrO_4^{-2}] = (4.5 \text{ x}10^{-5}) (4.5 \text{ x}10^{-5}) = 2.025 \text{ x}10^{-9}$ 2. Calculate the K_{sp} of Fe(OH)₃ if a saturated solution has $[Fe^{+3}] = 4.2 \times 10^{-6}$ $Fe(OH)_3 \leftrightarrow Fe^{+3} + 3 OH^{-1}$ $K_{sp} = [Fe^{+3}][OH^{-1}]^3 = (4.2 \text{ x}10^{-6}) [(3)(4.2 \text{ x}10^{-6})]^3 = 8.4 \text{ x}10^{-21}$ 3. Calculate the solubility (moles/L) of PbCO₃ if $K_{sp} = 7.4 \text{ x} 10^{-14}$ $K_{sp} = [Pb^{+2}][CO_3^{-2}] \quad 7.4x10^{-14} = x^2$ $PbCO_3 \leftrightarrow Pb^{+2} + CO_3^{-2}$ $x = 2.72 \text{ x}10^{-7} \text{ mole/L}$ 4. Calculate the solubility (moles/L) of Ag₂SO₄ if $K_{sp} = 1.2 \times 10^{-5}$ $K_{sp} = [Ag^{+1}]^2 [SO_4^{-2}] \quad 1.2x10^{-5} = 4x^3$ $Ag_2SO_4 \leftrightarrow 2 Ag^{+1} + SO_4^{-2}$ x = 0.0144 mole/L5. Calculate the solubility (mg/L) of FePO₄ if $K_{sp} = 9.4 \times 10^{-9}$ $FePO_4 \leftrightarrow Fe^{+3} + PO_4^{-3}$ $K_{sp} = [Fe^{+3}][PO_4^{-3}] \quad 9.4x10^{-9} = x^2$ $x = 9.70 x 10^{-5} mole/L$ 6. Calculate the solubility (mg/L) of Al₂(CO₃)₃ if $K_{sp} = 7.2 \times 10^{-25}$ $Al_2(CO_3)_3 \iff 2 Al^{+3} + 3 CO_3^{-2} K_{sp} = [Al^{+3}]^2 [CO_3^{-2}]^3 7.2x10^{-25} = 108x^5$ $x = 5.82 \times 10^{-6} \text{ mole/L} * (234 \text{ g/mole}) * (1000 \text{ mg/g}) = 1.36 \text{ mg/L}$ 7. How many mg of CuCrO₄ will dissolve in 50 mL of water ($K_{sp} = 9.4 \times 10^{-10}$) $9.4x10^{-10} = x^2$ $CuCrO_4 \leftarrow \rightarrow Cu^{+2} + CrO_4^{-2}$ $K_{sn} = [Cu^{+2}] [CrO_4^{-2}]$ $x = 3.07 \times 10^{-5} \text{ mole/L} * (179.5 \text{ g/mole}) * (1000 \text{ mg/g})* (0.05 \text{ L}) = 0.276 \text{ mg}$

8. If 100 mg of CaCO₃ (K_{sp} = 3.4 x10⁻⁹) is put in 500 mL of water, how many mg remain undissolved? CaCO₃ $\leftarrow \rightarrow$ Ca⁺² + CO₃⁻² $K_{sp} = [Ca^{+2}] [CO_3^{-2}]$ $x = 5.83 \times 10^{-5} \text{ mole/L} * (179.5 \text{ g/mole}) * (1000 \text{ mg/g})* (0.5 \text{ L}) = 2.92 \text{ mg}$ 100 mg - 2.92 mg dissolved = 97.1 mg undissolved

9. Put the following substances in order of least soluble to most soluble.

 $\begin{aligned} \text{NiCO}_{3} \ (\text{K}_{\text{sp}} = 1.4 \text{x} 10^{-7}) & \text{AuCl} \ (\text{K}_{\text{sp}} = 2 \text{x} 10^{-13}) & \text{MnCO}_{3} \ (\text{K}_{\text{sp}} = 2.3 \text{x} 10^{-11}) & \text{PbCrO}_{4} \ (\text{K}_{\text{sp}} = 2.8 \text{x} 10^{-13}) \\ \text{Since they are all the same number of pieces, you can compare them directly by } \text{K}_{\text{sp}} \ \text{values. Thus:} \\ \text{AuCl} \ (\text{K}_{\text{sp}} = 2 \text{x} 10^{-13}) & < \text{PbCrO}_{4} \ (\text{K}_{\text{sp}} = 2.8 \text{x} 10^{-13}) \\ < \text{MnCO}_{3} \ (\text{K}_{\text{sp}} = 2.3 \text{x} 10^{-11}) & < \text{NiCO}_{3} \ (\text{K}_{\text{sp}} = 1.4 \text{x} 10^{-7}) \end{aligned}$

10. Put the following substances in order of least soluble to most soluble.

 $Zn(CN)_2 (K_{sp} = 8x10^{-12})$ AgBr $(K_{sp} = 5.x10^{-13})$ Pb(OH)₂ $(K_{sp} = 1.4x10^{-15})$ BaSO₄ $(K_{sp} = 1.1x10^{-10})$ These substances have different number of ionic pieces so you can't compare K_{sp} values directly. If you do a solubility ICE table for each, the ultimate results will be as follows where x is the solubility:

 $Thus \qquad AgBr \ < \ Pb(OH)_2 \ < \ BaSO_4 \ < \ Zn(CN)_2$

11. Prove which of each of the substances below is the most soluble.

a. AgBr ($K_{sp} = 5.4x10^{-13}$) vs. AgI ($K_{sp} = 8.5 x10^{-17}$) AgBr \leftrightarrow Ag⁺¹ + Br⁻¹ $K_{sp} = [Ag^{+1}][Br^{-1}] 5.4x10^{-13} = x^2$ $x = 7.3 x10^{-7} \text{ mole/L}$ AgI \leftrightarrow Ag⁺¹ + Γ^{-1} $K_{sp} = [Ag^{+1}][\Gamma^{-1}] 8.5x10^{-17} = x^2$ $x = 9.2 x10^{-9} \text{ mole/L}$ b. PbCl₂ ($K_{sp} = 1.7 x10^{-5}$) vs. PbBr₂ ($K_{sp} = 6.6 x10^{-6}$) PbCl₂ \leftrightarrow Pb⁺² + 2 Cl⁻¹ $K_{sp} = [Pb^{+2}][Cl^{-1}]^2 1.7x10^{-5} = 4x^3$ x = 0.0162 mole/LPbBr₂ \leftrightarrow Pb⁺² + 2 Br⁻¹ $K_{sp} = [Pb^{+2}][Br^{-1}]^2 6.6x10^{-6} = 4x^3$ x = 0.0118 mole/Lc. AgCl ($K_{sp} = 1.8 x10^{-10}$) vs. Ag₂CrO₄ ($K_{sp} = 1.1 x10^{-12}$) AgCl \leftrightarrow Ag⁺¹ + Cl⁻¹ $K_{sp} = [Ag^{+1}][Cl^{-1}] 1.8x10^{-10} = x^2$ $x = 1.3 x10^{-5} \text{ mole/L}$ Ag₂CrO₄ \leftrightarrow 2 Ag⁺¹ + CrO₄⁻¹ $K_{sp} = [Ag^{+1}]^2 [CrO_4^{-2}] 1.1x10^{-12} = 4x^3$ $x = 6.5x10^{-5} \text{ mole/L}$ d. CaCO₃ ($K_{sp} = 3.4 x10^{-9}$) vs. Mg(OH)₂($K_{sp} = 5.6 x10^{-12}$) CaCO₃ \leftrightarrow Ca⁺² + CO₃⁻² $K_{sp} = [Ca^{+2}][CO_3^{-2}] 3.4x10^{-9} = x^2$ $x = 5.8 x10^{-5} \text{ mole/L}$ Mg(OH)₂ \leftarrow $Mg^{+2} + 2 OH^{-1} K_{sp} = [Mg^{+2}][OH^{-1}]^2 5.6x10^{-12} = 4x^3$ $x = 1.12 x10^{-4} \text{ mole/L}$

Common Ion Effect

1. Calculate the solubility (moles/L) of MgS ($K_{sp} = 5.2 \times 10^{-16}$) in:				
a. Pure water				
MgS $\leftarrow \rightarrow$ Mg ⁺² + S ⁻²	$K_{sp} = [Mg^{+2}][S^{-2}]$	$5.2 \times 10^{-16} = x^2$	$x = 2.3 x 10^{-8} mole/L$	
b. A 0.25 M solution of MgC	l_2			
MgS $\leftarrow \rightarrow$ Mg ⁺² + S ⁻²	$K_{sp} = [Mg^{+2}][S^{-2}]$	$5.2x10^{-16} = (0.25)(x)$	$x = 2.1 x 10^{-15} mole/L$	

2. Calculate the solubility (moles/L) of PbCl₂ (K_{sp} = 1.7 x10⁻⁵) in: a. Pure water PbCl₂ ← → Pb⁺² + 2 Cl⁻¹ K_{sp} = [Pb⁺²][Cl⁻¹]² 1.7x10⁻⁵ = 4x³ x = 0.0162 mole/L b. A 0.55 M solution of NaCl PbCl₂ ← → Pb⁺² + 2 Cl⁻¹ K_{sp} = [Pb⁺²][Cl⁻¹]² 1.7x10⁻⁵ = (x)(0.55)² x = 5.6x10⁻⁵ mole/L

3. Calculate the solubility (moles/L) of PbI₂ ($K_{sp} = 9.8 \times 10^{-9}$) in:

a. Pure water $PbI_2 \leftrightarrow Pb^{+2} + 2 \Gamma^1$ $K_{sp} = [Pb^{+2}][\Gamma^1]^2 \quad 9.8x10^{-9} = 4x^3$ $x = 1.35x10^{-3} \text{ mole/L}$ b. A 0.005 M solution of AlI₃ $PbI_2 \leftrightarrow Pb^{+2} + 2 \Gamma^1$ $K_{sp} = [Pb^{+2}][\Gamma^1]^2 \quad 9.8x10^{-9} = (x)(0.015)^2$ x = 0.435 mole/L

4. Calculate what mass of Hg₂SO₄ (K_{sp} = 6.5 x10⁻⁷) will dissolve per liter in: a. Pure water Hg₂SO₄ \leftrightarrow 2 Hg⁺¹ + 2 SO₄⁻² K_{sp} = [Hg⁺¹]² [SO₄⁻²] 6.5x10⁻⁷ = 4x³ x = 5.46x10⁻³ mole/L(497.3 g/mol) = 2.71 g/L b. A 0.0075 M solution of Na₂SO₄ Hg₂SO₄ \leftrightarrow 2 Hg⁺¹ + 2 SO₄⁻² K_{sp} = [Hg⁺¹]² [SO₄⁻²] 6.5x10⁻⁷ = (4x²)(0.0075) x = 4.65x10⁻³ mole/L (497.3 g/mol) = 2.31 g/L 5. Calculate what mass of CaCO₃ ($K_{sp} = 3.4 \times 10^{-9}$) will dissolve per liter in: a. Pure water $CaCO_3 \leftrightarrow Ca^{+2} + CO_3^{-2}$ $K_{sp} = [Ca^{+2}][CO_3^{-2}] \quad 3.4x10^{-9} = x^2$ $x = 5.83 \text{ x}10^{-5} \text{ mole/L} (100.1 \text{ g/mole}) = 5.84 \text{ x}10^{-3} \text{ g/L}$ b. A 0.45 M solution of CaCl₂ $CaCO_3 \leftrightarrow Ca^{+2} + CO_3^{-2}$ $K_{sp} = [Ca^{+2}][CO_3^{-2}] \quad 3.4x10^{-9} = (0.45)(x)$ $x = 7.56 \text{ x}10^{-9} \text{ mole/L} (100.1 \text{ g/mole}) = 7.56 \text{ x}10^{-7} \text{ g/L}$ 6. Calculate what mass of PbCl₂ ($K_{sp} = 1.7 \times 10^{-5}$) will dissolve per liter in: a. Pure water $PbCl_2 \leftarrow \rightarrow Pb^{+2} + 2 Cl^{-1}$ $K_{sp} = [Pb^{+2}][Cl^{-1}]^2 \quad 1.7x10^{-5} = 4x^3$ x = 0.0162 mole/L(278.2 g/mole) = 4.5 g/Lb. A 0.067 M solution of AlCl₃ $PbCl_2 \leftrightarrow Pb^{+2} + 2 Cl^{-1}$ $K_{sp} = [Pb^{+2}][Cl^{-1}]^2 \quad 1.7x10^{-5} = (x)(0.201)^2$ $x = 4.2x10^{-4}$ mole/L(278.2 g/mole) = 0.117 g/L 7. AgBr will be the least soluble in 0.10 M: b. CaBr₂ c. AlBr₃ d. Ag_2SO_4 e. AgNO₃ a. NaBr AlBr₃ will have the most concentrated [Br⁻¹] or [Ag⁺¹] since there are 3 Br⁻¹ for every 1 AlBr₃. Thus, AgBr will be least soluble in it. 8. MgF_2 will be least soluble in 0.25 M: a. KF b. $Mg(NO_3)_2$ c. MgC_2O_4 d. BaF_2 e. LiF BaF_2 will have the most concentrated [F⁻¹] or [Mg⁺²] since there are 2 F⁻¹ for every 1 BaF₂. Thus, MgF₂ will be least

Precipitation

soluble in it.

1. Will a ppt of CaCO₃ (K_{sp} = 3.4 x10⁻⁹) form if [Ca⁺²] = 4 x10⁻⁶ M and [CO₃⁻²] = 4 x10⁻³? $Q = [4 \times 10^{-6}][4 \times 10^{-3}] = 1.6 \times 10^{-8} >> 3.4 \times 10^{-9}$ so yes, ppt 2. Will a ppt of Ag₂CrO₄ (K_{sp} = 1.1 x10⁻¹²) form if [Ag⁺] = 3x10⁻⁴ and [CrO₄⁻²] = 2x10⁻⁴? $Q = [3 \times 10^{-4}]^2 [2 \times 10^{-4}] = 1.8 \times 10^{-11} >> 1.1 \times 10^{-12}$ so yes, ppt 3. Will a ppt of BaCO₃ (K_{sp} = 2.6 x10⁻⁹) form if 50 mL of $4x10^{-5}$ M Ba⁺² is mixed with 50 mL of $8x10^{-5}$ M CO₃⁻²? $Q = [(50/100)4 x 10^{-5}][(50/100)8x 10^{-5}] = 8x 10^{-10} << 2.6x 10^{-9}$ so no ppt 4. Will a ppt of PbBr₂ ($K_{sp} = 6.6 \times 10^{-6}$) form if 150 mL of 2×10^{-2} M Pb(NO₃)₂ is mixed with 50 mL of 3×10^{-2} M AlBr₃? $Q = [(150/200)2 \times 10^{-2}][(50/200)(3) \times 10^{-2}] = 7.6 \times 10^{-6} >> 6.6 \times 10^{-6}$ so yes, ppt 5. What concentration of $[OH^{-1}]$ will cause a ppt of $Fe(OH)_2$ ($K_{sp} = 4.9 \times 10^{-17}$) of a $2 \times 10^{-5} M Fe^{+2}$ solution ? $4.9 \times 10^{-17} = (2 \times 10^{-5}) (OH^{-1})^2$ $[OH^{-1}] = 1.56 \times 10^{-6} M$ 6. What concentration of $[C_2O_4^{-2}]$ will cause a ppt of $Ag_2C_2O_4$ ($K_{sp} = 5.4 \times 10^{-12}$) of a 4×10^{-4} M Ag^{+1} solution? $5.4 \times 10^{-12} = (4 \times 10^{-4})^2 (C_2 O_4^{-2})$ $[C_2O_4^{-2}] = 3.4 \times 10^{-5} \text{ M}$ 7. What mass of Ni(NO₃)₂*7 H₂O (s) will cause a ppt of NiCO₃ ($K_{sp} = 1.4 \times 10^{-7}$) in a 2 L solution of 3.5×10^{-4} M CO₃⁻²? $1.4 \times 10^{-7} = [Ni^{+2}](3.5 \times 10^{-4})$ $[Ni^{+2}] = 4x10^{-4} M$ Molar mass of Ni(NO₃)₂*7H₂O = 308.7 g/mole $[Ni^{+2}] = 4x10^{-4}$ moles/L * 2 L * 308.7 g/mole = 0.247 grams Ni(NO₃)₂*7H₂O 8. What mass of Pb(NO₃)₂ will cause a ppt of PbCl₂ ($K_{sp} = 1.7 \times 10^{-5}$) in 100 mL of a 2.4×10⁻² M solution of AlCl₃? Since there are 3 Cl^{-1} ions for every AlCl₃ then $[\text{Cl}^{-1}] = 7.2 \times 10^{-2} \text{ M}$ so: $1.7 \times 10^{-5} = [Pb^{+2}](0.072)^2$ $[Pb^{+2}] = 3.28 \times 10^{-3} M$ Molar mass of Pb(NO₃)₂ is 331.2 g/mole Thus: 3.28×10^{-3} moles/L * 1 L/1000 mL * 100 mL * 331.2 g/mole = 0.109 grams Pb(NO₃)₂

Separations by K_{sp}

1. A solution is made so that $[Ca^{+2}] = 0.00050$ and $[Mg^{+2}] = 0.00050$ as well. If $Cr_2O_7^{-2}$ is added, answer the following questions. Know that $K_{sp} CaCr_2O_7 = 4.8 \times 10^{-7}$ and $K_{sp} MgCr_2O_7 = 7.6 \times 10^{-8}$ a. Which will ppt 1st? At what $[Cr_2O_7^{-2}]$ will it begin to ppt? $CaCr_2O_7 \leftrightarrow Ca^{+2} + Cr_2O_7^{-2}$ $K_{sp} = [Ca^{+2}][Cr_2O_7^{-2}] 4.8x10^{-7} = x(0.0005)$ $x = 9.6 \times 10^{-4} \text{ mole/L}$ $MgCr_2O_7 \leftrightarrow Mg^{+2} + Cr_2O_7^{-2}$ $K_{sp} = [Mg^{+2}][Cr_2O_7^{-2}]$ 7.6x10⁻⁸ = x(0.0005) $x = 1.5 x 10^{-4} mole/L$ MgCr₂O₇ ppts 1st b. What is the maximum $[Cr_2O_7^{-2}]$ that can be made to ppt almost all of one and none of the other? 9.6×10^{-4} moles/L c. What is the concentration of the less soluble ion under the conditions specified in "b"? $MgCr_2O_7 \leftrightarrow Mg^{+2} + Cr_2O_7^{-2} = [Mg^{+2}][Cr_2O_7^{-2}] = 7.6x10^{-8} = (9.6x10^{-4})x$ $x = 7.92 \text{ x}10^{-5} \text{ mole/L}$ d. What % of the less soluble ion remains in solution under the conditions specified in "b"? $(7.92 \times 10^{-5} / 0.0005) \times 100\% = 15.8\%$ 2. A solution is made so that $[Pb^{+2}] = 0.00250$ and $[Hg^{+2}] = 0.0075$. If SO_4^{-2} is added, answer the following questions. Know that $K_{sp} PbSO_4 = 2.5 \times 10^{-8}$ and $K_{sp} HgSO_4 = 5.4 \times 10^{-7}$ a. Which will ppt 1^{st} ? At what $[SO_4^{-2}]$ will it begin to ppt? $\begin{array}{ll} PbSO_4 \leftrightarrow Pb^{+2} + SO_4^{-2} & K_{sp} = [Pb^{+2}][SO_4^{-2}] & 2.5x10^{-8} = x(0.0025) & x = 1 \ x10^{-5} \ mole/L \\ HgSO_4 \leftrightarrow Hg^{+2} + SO_4^{-2} & K_{sp} = [Hg^{+2}][SO_4^{-2}] & 5.4x10^{-7} = x(0.0075) & x = 7.2 \ x10^{-5} \ mole/L \end{array}$ PbSO₄ ppts 1st b. What is the maximum $[SO_4^{-2}]$ that can be made to ppt almost all of one and none of the other? $HgSO_4 \leftrightarrow Hg^{+2} + SO_4^{-2}$ $K_{sp} = [Hg^{+2}][SO_4^{-2}] 5.4x10^{-7} = x(0.0075)$ $x = 7.2 x 10^{-5} mole/L$ c. What is the concentration of the less soluble ion under the conditions specified in "b"? PbSO₄ ← → Pb⁺² + SO₄⁻² $K_{sp} = [Pb^{+2}][SO_4^{-2}] 2.5x10^{-8} = x(7.2x10^{-5})$ $x = 3.5 \times 10^{-4} \text{ mole/L}$ d. What % of the less soluble ion remains in solution under the conditions specified in "b"? $(3.5 \times 10^{-4} / 0.0025) \times 100\% = 13.9\%$ 3. A solution is made so that $[Zn^{+2}] = 0.00250$ and $[Ag^{+1}] = 0.057$. If F^{-1} is added, answer the following questions. Know that $K_{sp} ZnF_2 = 4.8 \times 10^{-7}$ and $K_{sp} AgF = 7.6 \times 10^{-8}$ a. Which will ppt 1^{st} ? At what $[F^{-1}]$ will it begin to ppt? $\begin{array}{ll} ZnF_2 \leftrightarrow Zn^{+2} + 2 \ F^{-1} \\ AgF \leftrightarrow Ag^{+1} + \ F^{-1} \end{array} & \begin{array}{ll} K_{sp} = [Zn^{+2}][\ F^{-1}]^2 & 4.8x10^{-7} = x^2(0.0025) \\ K_{sp} = [Ag^{+1}][\ F^{-1}]^2 & 7.6x10^{-8} = x(0.057) \end{array} & \begin{array}{ll} x = 1.39 \ x10^{-6} \ mole/L \\ x = 1.3 \ x10^{-6} \ mole/L \end{array}$ AgF ppts 1st b. What is the maximum $[F^{-1}]$ that can be made to ppt almost all of one and none of the other? 1.39×10^{-2} mole/L c. What is the concentration of the less soluble ion under the conditions specified in "b"? $K_{sp} = [Ag^{+1}][F^{-1}] \quad 7.6x10^{-8} = 1.39x10^{-2}(x)$ $AgF \leftrightarrow Ag^{+1} + F^{-1}$ $x = 5.47 \text{ x} 10^{-6} \text{ mole/L}$ d. What % of the less soluble ion remains in solution under the conditions specified in "b"?

 $(5.47 \times 10^{-6} / 0.057) \times 100\% = 0.0096\%$

Combination Problems

1. For the reaction at 2000 K

 $H_2(g) + CO_2(g) \leftrightarrow H_2O(g) + CO(g)$

For an experiment, the equilibrium values of each substance are as follows:

 $[H_2] = 0.20 \text{ M}$ $[CO_2] = 0.30 \text{ M}$ $[H_2O] = [CO] = 0.55 \text{ M}$

a. What is the mole fraction of CO in the equilibrium mixture?

 $X_{CO} = (0.55)/(0.20 + 0.30 + 0.55 + 0.55) = 0.355$

b. Calculate the value of K_c, the equilibrium constant for the reaction above.

 $K_c = (0.55)^2 / (0.20)(0.30) = 5.042$

- c. Determine K_p in terms of K_c for this system. $K_p = K_c$ because $\Delta n_{gas} = 0$
- d. When the system is cooled from 2000 K to a lower temperature, 30% of the CO is converted back to CO_2 . Calculate the value of K_c at this lower temperature.

Since 30% of CO is converted: 0.55*0.30 = 0.165 changes for each

$H_{2}(g) +$	$CO_2(g) \leftarrow \rightarrow$	$H_2O(g) +$	CO (g)
[] ₀ 0.20	0.30	0.55	0.55
Δ +0.165	+0.165	-0.165	-0.165
[] _{eq} 0.365	0.465	0.385	0.385

 $K_c = (0.385)^2 / (0.365)(0.465) = 0.873$

e. In a different experiment, 0.50 mole of H_2 is mixed with 0.50 mole of CO_2 in a 3.0 L reaction vessel at 2000 K. Calculate the equilibrium concentration, in M, of CO at this temperature.

$H_{2}(g) +$	$CO_2(g) \leftrightarrow \mathbf{i}$	$H_2O(g)$	+ CO (g)	
[] ₀ 0.167	0.167	0	0	
Δ -x	-X	+x	+x	
[] _{eq} 0.167-x	0.167-x	Х	Х	
$5.042 = x^2 / (0$	$(.167-x)^2$	2.245 = x/(0.16)	7-x) $x = [CO] = 0.$	1156

2. For the reaction:

$$PCl_5(g) \leftarrow \rightarrow PCl_3(g) + Cl_2(g)$$

It is observed that greater amounts of PCl₃ and Cl₂ are produced as the temperature is increased.

- a) What is the sign of ΔS° for the reaction? Explain.
- ΔS should be positive. You are going from one mole of gas on the left to 2 moles on the rights. This shows an increase in disorder and a positive entropy change
- b) What change, if any, will occur in ΔG° for the reaction as the temperature is increased? Explain. Since ΔS is positive, ΔG should decrease as temperature is increased. This is due to the equation $\Delta G = \Delta H - T\Delta S$. Since T is in K and therefore positive, you will be subtracting a positive value from ΔG .
- c) If He gas is added to the original mixture at constant volume and temperature, what will happen to the partial pressure of Cl₂? Explain. Dalton's law of partial pressures says that the total pressure is equal to the sum of the individual pressures. Adding more He gas will increase the total pressure but not change the pressure the Cl₂ exerts.
- d) If the volume of the reaction mixture is decreased at constant temperature to half the original volume, what will happen to the number of moles of Cl_2 in the reaction vessel? Explain.
- By decreasing the volume, you are increasing the pressures of each of the above species. Since there are unequal amounts of gas on the reactant and product sides of the equation above, the system will try to reduce the pressure increase it experienced. It can do this by going to the left side which will reduce the number of moles of Cl_2

3. For the reaction:

$$C(s) + CO_2(g) \leftrightarrow 2 CO(g)$$

Solid carbon and carbon dioxide gas at 1,160 K were placed in a rigid 2.00 L container, and the reaction represented above occurred. As the reaction proceeded, the total pressure in the container was monitored. When equilibrium was reached, there was still some C(s) remaining in the container. Results are recorded in the table below.

Time (hours)	Total Pressure of gases (atm)
0.0	5.00
2.0	6.26
4.0	7.09
6.0	7.75
8.0	8.37
10.0	8.37

(a) Write the expression for the equilibrium constant, Kp, for the reaction.

 $K_p = P^2_{CO}/P_{CO2}$

- (b) Calculate the number of moles of $CO_2(g)$ initially placed in the container. (Assume that the volume of the solid carbon is negligible.)
- n = PV/RT = (5 atm)(2 L)/(0.0821)(1160 K) = 0.105 moles
- (c) For the reaction mixture at equilibrium at 1,160 K, the partial pressure of the $CO_2(g)$ is 1.63 atm. Calculate:

(i) the partial pressure of CO(g), and

CO₂: 5 atm - 1.63 atm = 3.37 atm CO₂ reacted *(2 mole CO/1 mole CO₂) = 6.74 atm CO (ii) the value of the equilibrium constant, Kp. $K_p = P_{CO}^2/P_{CO2} = (6.74)^2/1.63 = 27.87$

(d) If a suitable solid catalyst were placed in the reaction vessel, would the final total pressure of the gases at equilibrium be greater than, less than, or equal to the final total pressure of the gases at equilibrium without the catalyst? Justify your answer. (Assume that the volume of the solid catalyst is negligible.)

Nothing would change. It would just get to equilibrium faster.

(e) In another experiment involving the same reaction, a rigid 2.00 L container initially contains 10.0 g of C(s), plus CO(g) and $CO_2(g)$, each at a partial pressure of 2.00 atm at 1,160 K. Predict whether the partial pressure of $CO_2(g)$ will increase, decrease, or remain the same as this system approaches equilibrium. Justify your prediction with a calculation.

 $Q = (2)^2/2 = 2$ $Q <<< K_p$ so reaction will go to the right This will cause the partial pressure of CO₂ to decrease

- 4. Answer the following questions:
 - a. A saturated solution is prepared by adding excess PbI₂(s) to distilled water to form 1.0 L of solution at 25 °C. The concentration of Pb⁺² (aq) in the saturated solution is found to be 1.3x10⁻³
 M. The chemical equation for the dissolution of PbI₂(s) in water is shown below:

$$PbI_2(s) \leftrightarrow Pb^{+2}(aq) + 2I^{-1}(aq)$$

i) Write the equilibrium-constant expression for the equation.

 $K_{sp} = [Pb^{+2}][I^{-1}]^2$

ii) Calculate the molar concentration of I^{-1} (aq) in the solution.

 $[Pb^{+2}] = 1.3x10^{-3} \text{ M} * (2 \text{ moles } I^{-1}/1 \text{ mole } Pb^{+2}) = 2.6x10^{-3} \text{ M}$

iii) Calculate the value of the equilibrium constant, K_{sp}.

 $K_{sp} = (1.3 \times 10^{-3})(2.6 \times 10^{-3})^2 = 8.79 \times 10^{-9}$

- b. A saturated solution is prepared by PbI_2 (s) to distilled water to form 2.0 L of solution at 25 °C. What are the molar concentrations of Pb^{+2} (aq) and Γ^1 (aq) in the solution? Justify your answer.
- The concentrations should be the same as above; $[Pb^{+2}] = 1.3 \times 10^{-3}$ and $[\Gamma^{1}] = 2.6 \times 10^{-3}$. Changing the volume does not change the concentration if the solution is still saturated.
- c. Soild NaI is added to a saturated solution of PbI_2 at 25 °C. Assuming that the volume of the solution does not change, does the molar concentration of Pb^{+2} (aq) in the solution increase, decrease, or stay the same? Justify your answer.
- By adding NaI, you are adding $[I^{-1}]$ and thus, by LeChatelier's Principle, the reaction should go to the left and form a precipitate. To do this, you must use up some of the Pb⁺² so thus $[Pb^{+2}]$ should decrease
- 5. The value of K_{sp} for the salt BaCrO₄ is $1.2x10^{-10}$. When a 500. mL sample of $8.2x10^{-6}$ M Ba(NO₃)₂ is added to 500. mL of $8.2x10^{-6}$ M Na₂CrO₄, no precipitate is observed.
 - i) Assuming the volumes are additive, calculate the molar concentrations of Ba^{+2} (aq) and CrO_4^{-2} (aq) in the 1.00 L of solution.

 $[Ba^{+2}] = 8.2 \times 10^{-6} \text{ M } Ba(NO_3)_2 * (500/1000) = 4.1 \times 10^{-6} \text{ M}$ $[CrO_4^{-2}] = 8.2 \times 10^{-6} \text{ M } Na_2 CrO_4 * (500/1000) = 4.1 \times 10^{-6} \text{ M}$

ii) Use the molar concentrations of Ba^{+2} (aq) and CrO_4^{-2} (aq) ions as determined above to show why a precipitate does not form. You must include a calculation as part of your answer.

 $Q = [Ba^{+2}][CrO_4^{-2}] = (4.1x10^{-6})(4.1x10^{-6}) = 1.681x10^{-11}$ $Q < K_{sp} \quad 1.681x10^{-1} < 1.2x10^{-10} \quad \text{so no ppt forms}$

- 6. Silver chromate dissociates in water according the equation below:
 - Ag_2CrO_4 (s) $\leftarrow \rightarrow 2 Ag^{+1}$ (aq) $+ CrO_4^{-2}$ (aq) $K_{sp} = 2.6 \times 10^{-12}$ at 25 °C a) Write the equilibrium-constant expression for the dissolving of Ag_2CrO_4 (s) $K_{sp} = [Ag^{+1}]^2 [CrO_4^{-2}]$
 - b) Calculate the concentration, in M, of Ag^{+1} (aq) in a saturated solution of Ag_2CrO_4 at 25°C
 - $2.6 \times 10^{-12} = 4 x^3$ $x = 8.66 \times 10^{-5} M$ Since there are 2 Ag^{+1} ions present, $[\text{Ag}^{+1}] = 1.732 \times 10^{-4}$
 - c) Calculate the maximum mass, in grams, of Ag₂CrO₄ that can dissolve in 100. mL of water at 25 °C.
 - $x = 8.6 \times 10^{-5}$ moles/L *(0.10 L) *(331.8 g/mole) = 0.002853 g
 - d) A 0.100 mol sample of solid AgNO₃ is added to a 1.00 L saturated solution of Ag₂CrO₄.
 - Assuming no volume change, does $[CrO_4^{-2}]$ increase, decrease, or stay the same? Justify. Since AgNO₃ will dissolve and make more Ag⁺¹ ions, the reaction will go left due to Le Chatelier's principle. This will cause CrO_4^{-2} to react and ppt so $[CrO_4^{-2}]$ will decrease.
- 7. In a saturated solution of Ag_3PO_4 at 25 °C, the concentration of Ag^{+1} (aq) is $5.3x10^{-5}$ M. The equilibrium constant expression for the dissolving of Ag₃PO₄ (s) in water is shown below:

$$K_{sp} = [Ag^{+1}]^{3}[PO_{4}^{-3}]$$

a) Write the balanced equation for the dissolving of Ag_3PO_4 in water.

$$Ag_3PO_4 \rightarrow 3 Ag^{+1} + PO_4^{-3}$$

b) Calculate the value of K_{sp} for Ag_3PO_4 at 25 °C.

- $[Ag^{+1}] = 5.3x10^{-5} \text{ but there is only 1 PO_4^{-3} for every 3 Ag^{+1} so:$ $5.3x10^{-5} *(1 \text{ mole PO_4^{-3}/3 mole Ag^{+1}}) = 1.77 x10^{-5} M PO_4^{-3} K_{sp} = [Ag^{+1}]^3 [PO_4^{-3}] = (5.3x10^{-5})^3 (1.77x10^{-5}) = 2.635x10^{-18}$

- c) A 1.00 L sample of saturated Ag₃PO₄ solution is allowed to evaporate at 25 °C to a final volume of 500. mL. What is the $[Ag^{+1}]$ in the solution? Justify your answer.

The concentration does not change in a saturated solution. As 500 mL evaporates, solid Ag₃PO₄ will ppt out at the bottom of the beaker. The solution will still be saturated, though, and therefore not change its concentration.