Practice – Heats of Formation

1. Calculate $\Delta H_{f}^{o}(kJ)$ for the following reaction from the listed standard enthalpies of formation: $CO(g) + NH_{3}(g) \longrightarrow HCN(g) + H_{2}O(g)$

$$\begin{split} \Delta H^{o}{}_{f} CO(g) &= -110.5 \text{ kJ} \\ \Delta H^{o}{}_{f} NH_{3}(g) &= -46.1 \text{ kJ} \\ \Delta H^{o}{}_{f} HCN(g) &= +135.1 \text{ kJ} \\ \Delta H^{o}{}_{f} H_{2}O(g) &= -241.8 \text{ kJ} \end{split}$$

2. Use the given standard enthalpies of formation to determine the heat of reaction of the following reaction:

 $2 \operatorname{Cl}_2(g) + 2 \operatorname{H}_2O(1) \longrightarrow 4 \operatorname{HCl}(g) + O_2(g)$

 $\Delta H^{o}_{f} H_{2}O(l) = -285.8 \text{ kJ/mole}$ $\Delta H^{o}_{f} HCl(g) = -92.3 \text{ kJ/mole}$

3. Use the given standard enthalpies of formation to determine the heat of reaction of the following reaction:

$$2 \operatorname{Ag}_2 S(s) + 2 \operatorname{H}_2 O(1) \longrightarrow 4 \operatorname{Ag}(s) + 2 \operatorname{H}_2 S(g) + O_2(g)$$

$$\begin{split} \Delta H^{\rm o}{}_{\rm f} Ag_2S(s) = -32.6 \text{ kJ/mole} \\ \Delta H^{\rm o}{}_{\rm f} H_2S(g) = -20.6 \text{ kJ/mole} \\ \Delta H^{\rm o}{}_{\rm f} H_2O(l) = -285.8 \text{ kJ/mole} \end{split}$$

4. The heats of formation of $CO_2(g)$ and $H_2O(l)$ are -394 kJ/mole and -285.8 kJ/mole respectively. Using the data for the following combustion reaction, calculate the heat of formation of $C_6H_5CO_2H(s)$.

$$2 C_6H_5CO_2(s) + 15 O_2(g) \longrightarrow 14 CO_2(g) + 6 H_2O(l)$$
$$\Delta H^o_{rxn} = -6454 \text{ kJ}$$

5. The heats of formation of CO₂(g) and H₂O(l) are -394 kJ/mole and -285.8 kJ/mole respectively. Using the data for the following combustion reaction, calculate the heat of formation of C₄H₁₀(g). $2 C_4H_{10}(g) + 13 O_2(g) \rightarrow 8 CO_2(g) + 10 H_2O(l)$ $\Delta H^{o}_{rxn} = -5756.1 \text{ kJ}$

6. The heats of formation of $CO_2(g)$ and $H_2O(l)$ are -394 kJ/mole and -285.8 kJ/mole respectively. Using the data for the following combustion reaction, calculate the heat of formation of $C_3H_4(g)$.

$$C_3H_4(g) + 4 O_2(g) \longrightarrow 3 CO_2(g) + 2 H_2O(1)$$

 $\Delta H^o_{rxn} = -1939.1 \text{ kJ}$